Abstract

Although Friction Stir Welding (FSW) avoids many of the problems encountered when fusion welding high strength Al-alloys, it can still result in substantial residual stresses that have a detrimental impact on service life. An FE model has been developed to investigate the effectives of the mechanical tensioning technique for controlling residual stresses in FSWs. The model purely considered the heat input and the mechanical effects of the tool were ignored. Variables, such as tensioning level, heat input, and plate geometry, have been studied. Good general agreement was found between modelling results and residual stress measurements, justifying the assumption that the stress development is dominated by the thermal field. The results showed a progressive decrease in the residual stresses for increasing tensioning levels and, although affected by the heat input, a relatively low sensitivity to the welding variables. At tensioning levels greater than ~ 50% of the room temperature yield stress, tensile were replaced by compressive residual stresses within the weld.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.