Abstract

The electrical resistivity and thermal conductivity behavior of Fe at core conditions are important for understanding planetary interior thermal evolution as well as characterizing the generation and sustainability of planetary dynamos. We discuss the electrical resistivity and thermal conductivity of Fe, Co, and Ni at the solid–liquid melting transition using experimental data from previous studies at 1 atm and at high pressures. With increasing pressure, the increasing difference in the change in resistivity of these metals on melting is interpreted as due to decreasing paramagnon-induced electronic scattering contribution to the total electronic scattering. At the melting transition of Fe, we show that the difference in the value of the thermal conductivity on the solid and liquid sides increases with increasing pressure. At a pure Fe inner core boundary of Mercury and Ganymede at ~5 GPa and ~9 GPa, respectively, our analyses suggest that the thermal conductivity of the solid inner core of small terrestrial planetary bodies should be higher than that of the liquid outer core. We found that the thermal conductivity difference on the solid and liquid sides of Mercury’s inner core boundary is ~2 W(mK)−1. This translates into an excess of total adiabatic heat flow of ~0.01–0.02 TW on the inner core side, depending on the relative size of inner and outer core. For a pure Fe Ganymede inner core, the difference in thermal conductivity is ~7 W(mK)−1, corresponding to an excess of total adiabatic heat flow of ~0.02 TW on the inner core side of the boundary. The mismatch in conducted heat across the solid and liquid sides of the inner core boundary in both planetary bodies appears to be insignificant in terms of generating thermal convection in their outer cores to power an internal dynamo suggesting that chemical composition is important.

Highlights

  • The processes of magnetic field generation and sustainability in planetary bodies depend on the composition and thermal state of their cores

  • Mercury and Ganymede at ~5 GPa and ~9 GPa, respectively, our analyses suggest that the thermal conductivity of the solid inner core of small terrestrial planetary bodies should be higher than that of the liquid outer core

  • We found that the thermal conductivity difference on the solid and liquid sides of Mercury’s inner core boundary is ~2 W(mK)−1

Read more

Summary

Introduction

The processes of magnetic field generation and sustainability in planetary bodies depend on the composition and thermal state of their cores. While the role of a solid inner core and its contribution to chemical composition convection in a liquid outer core was recognized long ago for Mercury [9], the possibility of Mercury’s weak surface magnetic field resulting from dynamo action in a thin shell geometry has been shown more recently [11]. Lower pressure measurements in the multi-anvil press of the T-dependent electrical resistivity of Co up to 5 GPa [29], Ni up to 9 GPa [30], and Fe up to 12 GPa [21] demonstrated an increasing change of resistivity on melting with increasing P This lower pressure regime is relevant for thermal transport at the ICB in the small planetary bodies Mercury and Ganymede.

Electronic Scattering in Ferromagnetic Metals
Electrical
Heat Flow at the Inner Core Boundaries of Mercury and Ganymede
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call