Abstract

Laboratory experiments were carried out with the aim of adapting a (FetO) dynamic control technique, in which (FetO) is estimated by calculating the oxygen balance during blowing, to the hot metal decarburization process. The rephosphorization condition in the higher decarburization rate period was then clarified based on those experiments. Next, (FetO) control experiments were carried out in a commercial-scale plant converter. (FetO) generation was promoted by increasing the oxygen flow rate and raising the lance height in the early stage of blowing, and the amount of dephosphorization during blowing was increased. Finally, a dephosphorization model was constructed by combining the coupled reaction model and the (FetO) estimation model. This model suggested an increase of the amount of dephosphorization during blowing, and the effect was confirmed by an experiment with a commercial 240 ton converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.