Abstract

We present the first measurements of Fe isotope variations in chemically purified natural samples using high mass resolution multiple-collector inductively coupled plasma source mass spectrometry (MC-ICPMS). High mass resolution allows polyatomic interferences at Fe masses to be resolved (especially, (40)Ar(14)N(+), (40)Ar(16)O(+), and (40)Ar(16)OH(+)). Simultaneous detection of Fe isotope ion beams using multiple Faraday collectors facilitates high-precision isotope ratio measurements. Fe in basalt and paleosol samples was extracted and purified using a simple, single-stage anion chemistry procedure. A Cu "element spike" was used as an internal standard to correct for variations in mass bias. Using this procedure, we obtained data with an external precision of 0.03-0.11 per thousand and 0.04-0.15 per thousand for delta(56/54)Fe and delta(57/54)Fe, respectively (2sigma). Use of Cu was necessary for such reproducibility, presumably because of subtle effects of residual sample matrix on mass bias. These findings demonstrate the utility of high-resolution MC-ICPMS for high-precision Fe isotope analysis in geologic and other natural materials. They also highlight the importance of internal monitoring of mass bias, particularly when using routine methods for Fe extraction and purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call