Abstract

Fe-Cr alloys constitute the model systems for the investigation of radiation damage effects in ferritic-martensitic steels which are candidate structural materials for fusion reactors. In the current study Fe-10at%Cr alloy films of 70 nm thickness were irradiated by 490 keV Fe + ions at 300 °C at doses ranging from 0.5 up to 20 displacements per atom (dpa). The Fe + ion energy chosen corresponds to the energy of primary Fe(Cr) knock-on atoms from 14 MeV neutrons. The irradiation effects were investigated employing X-ray diffraction and X-ray and polarized neutron reflectivity. The irradiation produced dose dependent: a) lattice constant increase, b) grain size growth and c) Cr depletion in the matrix. These changes occur largely up to 4 dpa and afterwards the system attains a dynamic equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call