Abstract
Iron is an essential transition metal species for all living organisms and plays various physiologically important roles on the basis of its redox activity; accordingly, the disruption of iron homeostasis triggers oxidative stress and cellular damage. Therefore, cells have developed sophisticated iron-uptake machinery to acquire iron while protecting cells from uncontrolled oxidative damage during the uptake process. To examine the detailed mechanism of iron uptake while controlling the redox status, it is necessary to develop useful methods with redox state selectivity, sensitivity, and organelle specificity to monitor labile iron, which is weakly bound to subcellular ligands. Here, we report the development of Mem-RhoNox to monitor local Fe(II) at the surface of the plasma membrane of living cells. The redox state-selective fluorescence response of the probe relies on our recently developed N-oxide strategy, which is applicable to fluorophores with dialkylarylamine in their π-conjugation systems. Mem-RhoNox consists of the N-oxygenated rhodamine scaffold, which has two arms, both of which are tethered with palmitoyl groups as membrane-anchoring domains. In an aqueous buffer, Ac-RhoNox, a model compound of Mem-RhoNox, shows a fluorescence turn-on response to the Fe(II) redox state-selectively. An imaging study with Mem-RhoNox and its derivatives reveals that labile Fe(II) is transiently generated during the major iron-uptake pathways: endocytotic uptake and direct transport. Furthermore, Mem-RhoNox is capable of monitoring endosomal Fe(II) in primary cultured neurons during endocytotic uptake. This report is the first example that identifies the generation of Fe(II) over the course of cellular iron-uptake processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.