Abstract

In this study, Fe-doped TiO2/SiO2 (Fe@TS) nanofibrous membranes with molecular imprinted modification, were fabricated by a combination of sol-gel process, electrospinning, calcination and liquid phase deposition techniques. The precursor sol was prepared from one-pot condensation of poly(vinylpyrrolidone), ferric chloride hexahydrate, tetraethyl orthosilicate and titanium n-butoxide in the mixture solvents of N,N-dimethylformamide and ethyl alcohol. Fibrous membrane wasthen fabricated by electrospinning, followed by calcination to form the Fe@TS composite. The physicochemical properties of Fe@TS were characterized. Thereafter, 4-nitrophenol (4NP) was used as the template to deposit onto nanofibrous Fe@TS membranes, with a thin layer of molecular imprinted polymer in liquid phase. The photodegradation capabilities of 4NP and methyl orange wereexamined in both single and binary systems. The results demonstrated that molecular imprinted Fe@TS membranes exhibited excellent selectivity for photodegradation of 4NP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call