Abstract

A Single Atom Catalyst (SAC) for CO oxidation based on Boron-Nitrogen (BN) has been systematically investigated using spin-polarized density functional theory. Nine noble and non-noble metals including Fe, Co, Ni, Cu, Al, Zn, Ag, Au, and Pt are chosen as candidates for the sake of appropriate catalytic metal. Fe doped BN at B site (Fe-BNB) is the most promising SAC for CO oxidation after careful screening. Then, the structures of Fe-BNB and gases adsorbed systems can keep stably after 2.5 ps of first-principles molecular dynamics simulations at 300 K. Three possible reaction mechanisms are discussed (Langmuir-Hinshelwool, Eley-Rideal, and Termolecular Eley-Rideal), and the LH mechanism shows the lowest potential energy pathway (0.52 eV) with the highest exothermic energy (4.37 eV), which is comparable to the Graphene and other BN based catalysts with regard to energy barrier of the rate determination step (0.52 eV vs 0.08–0.68 eV). On the basis of rational first-principles calculations, the proposed Fe-BNB is a convincing SAC for CO oxidation. Our results provide reliable insights to design promising heterogeneous catalysts based on BN monolayer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call