Abstract

Iron availability to plants is often limited when soil pH is 7 or higher. In C rich, but Fe limiting environments, microorganisms may produce organic chelators that complex Fe and increase its availability to plants. Seedlings of soybean (Glycine max L.) and oat (Avena sativa L.) plants, with Fe-efficient or inefficient uptake mechanisms, were grown in an Fe free nutrient solution at pH 7.5. Experiments (using a complete factorial design) were conducted in which these seedlings were transferred to a fresh nutrient solution and treated with Fe sources (FeCl3, FeEDDHA, and Fe complexed with chelators produced by compost microorganisms (CCMs) after their enrichment in an Fe free, glucose medium), Fe concentrations (0 and 6.7 μM) and antibiotic (0 and 100 mg streptomycin L-1). Dry weight of soybean plants and Fe uptake were significantly (P ≤ 0.05) higher when Fe was supplied as 59FeCCM than as59 FeCl3 and similar to when Fe was supplied as59 FeEDDHA. Dry weight of the Fe-inefficient Tam 0-312 oat cultivar was also significantly higher when Fe was supplied as FeCCM. Fe uptake by oat, when supplied as 59FeCCM, was twice that for59 FeEDDHA and 59FeCl3. Chlorophyll concentration in plants supplied with FeCCM and FeEDDHA was significantly greater (P ≤ 0.05) than in minus Fe control plants and in FeCl3 supplied plants. Activities of catalase and peroxidase, measured as indicators of Fe nutrition in soybean and oats, were generally increased when Fe was supplied with FeCCM as compared to the other Fe sources. The experimental conditions in which the CCMs were produced are similar to those in soil after amendment with manures or other readily available organic materials. These CCMs can bind with Fe, even under slightly alkaline conditions, and effectively improve Fe nutrition of soybean and oat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call