Abstract

SUMMARYIn this paper, we developed an a posteriori error analysis of a coupling of finite elements and boundary elements for a fluid–structure interaction problem in two and three dimensions. This problem is governed by the acoustic and the elastodynamic equations in time‐harmonic vibration. Our methods combined integral equations for the exterior fluid and FEMs for the elastic structure. It is well‐known that because of the reduction of the boundary value problem to boundary integral equations, the solution is not unique in general. However, because of superposition of various potentials, we consider a boundary integral equation that is uniquely solvable and avoids the irregular frequencies of the negative Laplacian operator of the interior domain. In this paper, two stable procedures were considered; one is based on the nonsymmetric formulation and the other is based on a symmetric formulation. For both formulations, we derived reliable residual a posteriori error estimates. From the estimators we computed local error indicators that allowed us to develop an adaptive mesh refinement strategy. For the two‐dimensional case we performed an adaptive algorithm on triangles, and for the three‐dimensional case we used hanging nodes on hexahedrons. Numerical experiments underline our theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.