Abstract
Since the presence of arsenic in the waters of the world causes serious health effects on people, it is very important to remove it. Layered double hydroxides have a high surface area and high anion exchange capacity, and because of this feature, it is a potential adsorbent to remove arsenic. For regeneration and reuse of adsorbents, researchers in some limited studies have used agents such as acids and alkalis. Media replacement accounts for approximately 80% of the total operational and maintenance costs. In this paper, an adsorption/desorption/regeneration study was carried out with MgFeHT to determine the desorption properties of the adsorbent and to examine its reusability. The best alkaline desorption solution was determined from two different alkaline solutions: NaOH and KH2PO4. As(V) adsorption capacity of the MgFeHT at different pH (3-12) using the arsenic aqueous solution (with 2,000 μg As(V)/L) was evaluated. For the adsorption process, the experimental data are fitted well with the pseudo-second-order kinetic model and the Langmuir model. Moreover, the concentration of 2,000 μg/L arsenic was reduced to below the legal limit determined by the WHO (<10 μg/L). The regeneration studies were conducted on the adsorptive media used in the arsenic removal system. The regeneration efficiency of As(V) was maintained 98.5% for four regeneration cycles using 0.5 M NaOH. MgFeHT was successfully regenerated with an aqueous solution of NaOH and was reused with a small loss of sorption efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.