Abstract

The electrochemical nitrate reduction reaction (NO3RR) is an attractive green alternative to the conventional Haber-Bosch method for the synthesis of NH3. However, this reaction is a tandem process that involves multiple steps of electrons and protons, posing a significant challenge to the efficient synthesis of NH3. Herein, we report a high-rate NO3RR electrocatalyst of Fe and Cu double-doped Co3O4 nanorod (Fe1/Cu2-Co3O4) with abundant oxygen vacancies, where the Cu preferentially catalyzes the rapid conversion of NO3- to NO2- and the oxygen vacancy in the Co3O4 substrate can accelerate NO2- reduction to NH3. In addition, the introduction of Fe can efficiently capture atomic H* that promotes the dynamics of NO2- to NH3, improving Faradaic efficiency of the produced NH3. Controlled experimental results show that the optimal electrocatalyst of Fe1/Cu2-Co3O4 exhibits good performance with high conversion (93.39%), Faradaic efficiency (98.15%), and ammonia selectivity (98.19%), which is significantly better than other Co-based materials. This work provides guidance for the rational design of high-performance NO3RR catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call