Abstract

In this paper the main focus is on analyzing the effect of various parameters like winding angle, winding pattern and fiber volume fraction on the stresses generation in a composite pressure vessel using Finite Element (FE) approach. The present study makes use of three different composite materials namely GFRP (Glass Fiber Reinforced Plastic), CFRP (Carbon Fiber Reinforced Plastic) and AFRP (Aramid Fiber Reinforced Plastic). Further they are compared with metallic pressure vessel (LCS-Low Carbon Steel, Al 6061-T6-Aluminium 6061-T6) to assess their potentiality as a substitute to metallic pressure vessels. Based on Maximum Specific Stress (MSS) results observations it is concluded that optimum parameters suggested for fabrication of pressure vessel are winding angle ±55o, fiber volume fraction, Vf of 0.55 and winding pattern of ((±∅°2)/90°2/(±∅°2)). Following AFRP, CFRP and GFRP provides better performance when compared with LCS and Al 6061 T6 based on MSS value. Considering the availability, cost and application factors it can be concluded that GFRP can be conveniently used as substitute for metallic pressure vessels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.