Abstract

The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call