Abstract

The recent progress in metal nanoparticle-based catalytic systems has prompted the research community to focus on combining the unique physicochemical properties with their catalytic activities. In this context, magnetic nanomaterials offer significant advantage as they can be separated after the catalytic reaction and reused. Among such systems, Fe-based nanoparticles are undeniably the most popular as they can be synthesized from the earth-abundant resources. However, in view of the poor chemical stability of nanoscale zero-valent iron (nZVI) particles during the reaction process, their use in advanced catalytic systems is still challenging. Herein, we present a Fe(0) species embedded in a thermally reduced graphene oxide matrix (Fe/TRGO) as a nanocatalyst for the reduction of nitro compounds. The catalyst exhibits high substrate scope with high yield and selectivity and can be recycled up to four times without any significant loss in activity. The unique rGO (reduced graphene oxide)-entrapped doughnut-shaped structure of the Fe(0) species, accompanied by the thin oxide protection layer, is responsible for the superior catalytic activity. Due to the scalable synthesis and high catalytic efficiency the catalyst offers a real application potential in industrial transformations of nitro compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call