Abstract

Cuproptosis is a new form of programmed cell death, which is associated with the mitochondrial TCA (tricarboxylic acid) cycle. But the functions of cuproptosis in endometriosis progression are still unknown. Here, we find that cuproptosis suppresses the growth of endometriosis cells and the growth of ectopic endometrial tissues in a mouse model. FDX1 as a key regulator in cuproptosis pathway could promote cuproptosis in endometriosis cells. Interestingly, FDX1 interacts with G6PD, and reduces its protein stability, which predominantly affects the cellular redox-regulating systems. Then, the reduced G6PD activity enhances cuproptosis via down-regulating NADPH and GSH levels. Collectively, our study demonstrates that FDX1 mediates cuproptosis in endometriosis via G6PD pathway, resulting in repression of endometriosis cell proliferation and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.