Abstract

This article demonstrates the capability of using the finite-differences time-domain (FDTD) method as simulation tool for optimizing the design of an antenna. The FDTD simulation method is locally enhanced with subcell modeling technique, which incorporates a-priori known field behavior in (1) curved material interfaces and (2) strong field gradients near sharp metal edges. Combining the FDTD subcell modeling technique with a FDTD simulation hardware acceleration card enables the efficient optimization of several parameters based on genetic algorithms. (4 pages)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.