Abstract

In this paper, we propose a reduced-complexity finite difference time domain (FDTD) simulations of modulated metasurfaces with arbitrary unit cells. The three dimensional (3D) physical structure of the metasurface is substituted by a spatially varying surface impedance boundary condition (IBC) in the simulation; as the mesh size is not dictated by sub-wavelength details, considerable advantage in space- and time-step is achieved. The local parameters of the IBC are obtained by numerical simulation of the individual unit cells of the physical structure, in a periodic environment approximation, in the frequency domain. As the FDTD requires an appropriate time domain impulse-response, the latter is obtained by broad-band frequency simulations, and vector fitting to an analytic realizable time response. The approach is tested on metasurface structures with complex unit cells and extending over 10 ××10 wavelengths, using a standard PC with 64GB RAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call