Abstract

In this paper the model of trapping force on microsphere near focus in single optical tweezers is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods. Fifth order Gaussian beam based on spherical vector wave function (VSWF) is adopted as simulation light source; the correct light field transmission is obtained. The influences of the wavelength, waist and polarization of light sources, the radius and refractive index of the microsphere on the optical trapping force are discussed. The influence of nearby microsphere and beam polarization on the trapping force of the trapped microsphere in single optical tweezers is analyzed. The effect of beam polarization working on the trapping force of the trapped microsphere is specially analyzed. As results of simulation, the trapping force acting on the microsphere by the circularly polarized beam is larger than that by the linearly polarized beam. The stability of the trapped microsphere in single optical tweezers will be disturbed by the nearby microsphere and lose its balance. Varying the beam polarization will lead to the change of the trapping force of the trapped microsphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call