Abstract

The finite-difference time-domain (FDTD) technique for simulating electromagnetic wave interaction with a dispersive chiral medium is extended to include the simulation of dispersive bianisotropic media. Due to anisotropy and frequency dispersion of such media, the constitutive parameters are represented by frequency-dependent tensors. The FDTD is formulated using the Z-transform method, a conventional approach for applying FDTD in frequency-dispersive media. Omega medium is considered as an example of bianisotropic media, the frequency-dependent tensors of which are based on analytical models. The extended FDTD method is used to determine the reflection and transmission coefficients of co- and cross-polarized electromagnetic waves from omega slabs, illuminated by normally incident plane waves. Three cases are simulated: 1) a slab of uniaxial omega medium with its optical axis parallel to the propagation vector; 2) a slab of rotated uniaxial omega medium with its optical axis not parallel to the propagation vector; and 3) a slab of biaxial omega medium. The results are validated by means of comparisons with analytical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.