Abstract

This letter presents a finite-difference time-domain formulation to model electromagnetic wave propagation in dispersive media using matrix exponential method. The Maxwell's curl equations and the time domain relations between electric fields and auxiliary variables are formulated as a first order differential matrix system. The fundamental solution to such a system is derived in terms of matrix exponential and the update equations can be extracted conveniently from the solution. Numerical results show that this formulation yields higher accuracy compared to many other previous methods, without incurring additional auxiliary variable and complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.