Abstract
Phishing attacks have emerged as a major social engineering threat that affects businesses, governments, and general internet users. This work proposes a social engineering phishing detection technique based on Deep Learning (DL). Initially, website data is taken from the dataset. Then, the features of Natural Language Processing (NLP) like bag of words, n-gram, hashtags, sentence length, Term Frequency- Inverse Document Frequency of records (TF-IDF), and all caps are extracted and then web feature extraction is carried out. Later, the feature fusion is done using the Neyman similarity with Deep Belief Network (DBN). Afterwards, oversampling is used for data augmentation to enhance the number of training samples. Lastly, the detection of phishing attacks is performed by employing the proposed Fuzzy Deep Neural-Stacked Autoencoder (FDN-SA). Here, the proposed FDN-SA is developed by combining a Deep Neural Network (DNN), and Deep Stacked Autoencoder (DSA). Further, the investigation of FDN-SA is accomplished based on the accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) and is observed to compute values of 0.920, 0.925, and 0.921, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.