Abstract

Incident detection (ID), or the automatic discovery of anomalies from road traffic data (e.g., road sensor and GPS data), enables emergency actions (e.g., rescuing injured people) to be carried out in a timely fashion. Existing ID solutions based on data mining or machine learning often rely on dense traffic data; for instance, sensors installed in highways provide frequent updates of road information. In this paper, we ask the question: can ID be performed on sparse traffic data (e.g., location data obtained from GPS devices equipped on vehicles)? As these data may not be enough to describe the state of the roads involved, they can undermine the effectiveness of existing ID solutions. To tackle this challenge, we borrow an important insight from the transportation area, which uses trajectories (i.e., moving histories of vehicles) to derive incident patterns. We study how to obtain incident patterns from trajectories and devise a new solution (called Filter-Discovery-Match (FDM)) to detect anomalies in sparse traffic data. We have also developed a fast algorithm to support FDM. Experiments on a taxi dataset in Hong Kong and a simulated dataset show that FDM is more effective than state-of-the-art ID solutions on sparse traffic data, and is also efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.