Abstract

This article deals with the finite differential method of static performance of a foil journal gas bearing. A foil bearing is a self acting hydrodynamic device, which separates stationary and rotating components of high speed rotating machinery by a fluid film of air or other gaseous lubricant. The present work concentrates on common approach in foil bearing in calculating the carrying capacity for a given shaft position (figure-1). During this work the external load is fixed and related shaft position is investigated. For steady operating characteristics such as minimum film thickness and load capacity predicted for the foil bearing. The system of governing equation is solved numerically with FDM by a computer program written in the MATLAB computing environment. A generalized hydrodynamic analysis is conducted to systematically analyses the effect like bearing speed is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.