Abstract
SummaryA number of methods have been developed for solving the dynamics of saturated porous media. However, most solutions are based on the finite element method, and only a few employ finite differences (FDM). One problem with the FDM is the difficulty in fulfilling the inf‐sup (Ladyženskaja‐Babuška‐Brezzi) condition. This paper explores solutions with the FDM, including the development of new schemes aiming at stabilised formulations. The efficiency, accuracy and stability of several FDM and finite element method algorithms are thoroughly investigated as well. A combination of primary variables from the theory of porous media is considered, including the so‐called up and uvp formulations. Six numerical schemes are produced and quantitatively studied. Simulations of 1D and 2D wave propagation problems are performed in order to reveal the advantages and drawbacks of all schemes. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.