Abstract

The main objective of this paper is the study of a FDIR for an IMU aiming at space applications with focus on the gyro signal analysis and the tests of the filtering algorithms. The algorithms have been tested by using lab data provided by the DMC LABSIM (Physical’s Simulation Laboratory of the Space Mechanics and Control Division of INPE). The results have demonstrated good agreement with the concepts applied in this study. Automatic detection procedures are very important in the characterization of occurrence, definition of criteria, and device types in the scenario of AOCS FDIR. An IMU comprised of four gyros in a tetrahedral configuration is one of the assumed components for the AOCS (attitude and orbit control subsystem) considered in this work. The types of failures considered in this paper are the step abrupt change, ramp/drift/slow, stuck, cyclic, erratic, spike, and finally the stuck for variance alteration noise. An appropriate algorithm for the automatic detection of each type of fault is developed. The approach includes the mapping capability of fault event indicators to the IMU. This mapping is very important in the characterization of the occurrence, definition of criteria, and device types as well as associated fault identification for an AOCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call