Abstract

Recent studies indicate that a focal, limited, inflammatory response can be safely elicited after direct bronchial instillation of small doses of endotoxin into a single lung segment. Because the radiotracer [18F]fluorodeoxyglucose ([18F]FDG) is taken up at accelerated rates within inflamed tissues, we hypothesized that we could detect and quantify this regional inflammatory response with positron emission tomography (PET). We imaged 18 normal volunteers in a dose-escalation study with 3 endotoxin dosing groups (n = 6 in each group): 1 ng/kg, 2 ng/kg, and 4 ng/kg. Endotoxin was instilled by bronchoscopy into a segment of the right middle lobe, with imaging performed approximately 24 h later, followed by bronchoalveolar lavage (BAL). A "subtraction imaging analysis" was performed in the highest dose cohort to identify the area of inflammation, using the preendotoxin scan as a baseline. BAL neutrophil counts were significantly higher in the highest dose group compared with the other two groups (1,413 +/- 625 vs. 511 +/- 396 and 395 +/- 400 cells/mm3; P < 0.05). Autoradiography performed on cells harvested by BAL showed specific [3H]deoxyglucose ([3H]DG) uptake limited to neutrophils. In vitro [3H]DG uptake in BAL neutrophils in the 4 ng/kg dose group (but not in the 2 ng/kg group) was statistically greater than in peripheral blood neutrophils obtained before endotoxin instillation. The rate of [18F]FDG uptake was greatest in the 4 ng/kg group, with a consistent, statistically significant increase in the rate of uptake after endotoxin instillation compared with baseline. We conclude that the inflammatory response to low-dose endotoxin in a single lung segment can be visualized and quantified by imaging with FDG-PET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.