Abstract

Multiple-input multiple-output (MIMO) radar enjoys the advantage of increased degrees-of-freedom and spatial diversity gain, but it cannot effectively resolves the targets closely spaced in the same angle cell (but different range cells). Frequency diverse array (FDA)-MIMO radar can handle this problem by exploiting its range-dependent beampattern. FDA-MIMO radar was, thus, suggested for range–angle estimation of targets. Nevertheless, it is necessary to provide theoretical performance analysis for such a relatively new radar technique. Since multiple signal classification (MUSIC) algorithm is widely adopted in most of the FDA-MIMO literature, this paper derives the Cramer–Rao lower bound and mean square error expressions in MUSIC-based range–angle estimation algorithms for a general FDA-MIMO radar. Furthermore, the corresponding range and angle resolution thresholds in target detection and localization are also derived. Numerical results verify that the FDA-MIMO indeed outperforms conventional MIMO radar in both range–angle estimation and resolution threshold performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.