Abstract

The membrane bound form of bacteriophage fd coat protein has a long hydrophobic membrane spanning helix and a shorter amphipathic helix in the plane of the bilayer. Residues near the N and C termini and in the turn connecting the two helices are mobile. The locations and orientations of the helical secondary structure elements and the protein backbone dynamics were characterized by combining results from multidimensional solution NMR experiments on protein samples in micelles and high resolution solid-state NMR experiments on protein samples in oriented and unoriented lipid bilayers. The coat protein is a monomer in micelles. The secondary structure of the membrane bound form of fd coat protein is very similar to that of the structural form found in the virus particles, since it is nearly all alpha helix. However, the membrane bound form of the protein differs from the structural form of the protein in virus particles in the arrangement of the secondary structure, since the membrane bound form of the protein has two distinct helical domains oriented perpendicular to each other and the structural form of the protein in the virus particles has a nearly continuous helix aligned approximately along the filament axis. In addition, there are substantial differences in the dynamics of residues in the bend between the two helices and near the C terminus, since they are mobile in the membrane bound form of the protein and not in the virus particles. Residues 1 to 5 at the N terminus are highly mobile and unstructured in both the membrane bound and structural forms of the coat protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.