Abstract

The inositol (1,4,5) trisphosphate 3-kinase (ITP3K) phosphorylates Ins (1,4,5) P3 to produce Ins (1,3,4,5) P4. The ITP3K substrate, InsP3, and its product, InsP4, both have the potential to regulate mast cell function. Here, we explore the effects of dominant inhibition of ITP3K upon secretory responses and Ras GTPase activation following antigenic cross-linking of the mast cell immunoreceptor, FcɛRI. Inhibition of ITP3K potentiates both calcium release from intracellular stores and calcium-dependent secretory responses in mast cells. Moreover, mast cells with dominantly inhibited ITP3K display constitutive activation of Ras and certain Ras effector pathways. We propose three mechanisms by which ITP3K inhibition could influence Ras activation. The protection of InsP3 that results from ITP3K inhibition may lead to enhanced activation of calcium-sensitive Ras-GAPs or -GRFs. Similarly, the deficit in InsP4 may change the behavior of the InsP4 receptor, the GAP1 IP4BP. Our data are inconsistent with calcium-sensitive Ras-GAP activation being the primary consequence of ITP3K inhibition in mast cells. Rather, we observe potentiation of Ras responses in mast cells transfected with dominant negative GAP1 IP4BP. Moreover, shRNA-mediated knockdown of GAP1 IP4BP potentiates FcɛRI-mediated Ras activation, indicating that this InsP4-binding GAP protein may be used by the FcɛRI immunoreceptor to regulate Ras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.