Abstract

An ultrasensitive fluorescence method for early diagnosis of lung cancer via Nafion-initiated atom transfer radical polymerization (ATRP) is reported, in this paper. In the proposed method, thiolated peptide nucleic acid (PNA) is modified to amino magnetic beads (MBs) via a cross-linking agent to specifically capture target DNA (tDNA), and the initiator (Nafion) of ATRP is attached to PNA/DNA heteroduplexes based on the phosphate groups of the tDNA and sulfonate groups of Nafion via phosphate-Zr4+-sulfonate chemistry. Nafion as a macroinitiator of ATRP possesses multiple C–F active sites to initiate polymerization, and numerous polymeric chains that significantly amplify the fluorescent signal are formed. Under optimal conditions, a good linear relationship is obtained in the range of 0.1 nM–0.1 fM with correlation coefficients of 0.9975, and the detection limit is as low as 35.5 aM (∼214 molecules). The proposed strategy has several advantages of simplicity, cost-effectiveness, selectivity and sensitivity. More importantly, the anti-interference results demonstrate that the proposed Nafion-initiated ATRP strategy has great potential in bioanalytical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call