Abstract

White Chilean strawberries (Fragaria chiloensis) are non-climacteric fruits, with an exotic color and aroma. In order to discover genes involved in the development of these fruits, we identified a fragment of a gene encoding a late embryogenesis abundant domain protein, FcLDP1, that was expressed in early stages of fruit development, particularly in receptacles. Hormones play key roles in regulating the development of non-climacteric fruits. We show that the brassinosteroid content of the white strawberry varies during development. Additionally, FcLDP1 as well as the closest ortholog in the woodland strawberry, F. vesca (FvLDP1) possess multiple brassinosteroid, as well as abscisic acid (ABA) response motifs in the promoter region, consistent with the response of transiently expressed FcLDP1 promoter-GFP fusions to these hormones, and the rise in FcLDP1 transcript levels in white strawberry fruits treated with brassinosteroids or ABA. These findings suggest that both hormones regulate FcLDP1 expression during the development of white strawberries.

Highlights

  • The octoploid white Chilean strawberry, Fragaria chiloensis produces exotic fruits with excellent taste, aroma, and color, and it is a parental species of the commercial red strawberry, F.× ananassa (Folta et al, 2005)

  • An suppression subtractive hybridization (SSH) library from cDNA of F. chiloensis collected at the four developmental stages was generated in order to better understand the processes underlying the development and ripening of the Chilean white strawberry (Pimentel et al, 2010), and the results analyzed in detail (Handford et al, 2014)

  • Considering the changes in color, firmness and size in white strawberry fruits, and elevated brassinosteroid levels before the ripening of non-climacteric fruits, we focussed on those transcripts that were more abundant in C3 compared to C2 fruit stages

Read more

Summary

Introduction

The octoploid white Chilean strawberry, Fragaria chiloensis produces exotic fruits with excellent taste, aroma, and color, and it is a parental species of the commercial red strawberry, F.× ananassa (Folta et al, 2005). The genus Fragaria develops aggregate accessory fruits with hundreds of achenes attached to a fleshy receptacle. Receptacles are composed of about 90% water and 10% soluble solids, substances which are imported from distal parts of the plant. Fruits are highly dependent on the xylem and phloem which together make up the vascular. For this reason, the development of the vascular system is essential for fruit development, determining the texture and integrity of the mature fruit (Aharoni et al, 2002)

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call