Abstract

Within the context of the electric power market liberalization, DC networks have many interests compared to AC ones. New energy landscapes open the way of a diversified production. Innovative interconnection diagrams, in particular using DC buses, are under development. In this case it is not possible to defer the fault current interruption in the AC side. DC fault current cutting remains a difficult problem. FCLs (Fault Current Limiters) enable to limit the current to a preset value, lower than the theoretical short-circuit current. For this application Coated Conductors (CC) offer an excellent opportunity. Due to these promising characteristics we build a test bench and work on the implementation of these materials. The test bench is composed by 10 power amplifiers, to reach 4 kVA in many configurations of current and voltage. We carried out limiting experiments on DyBaCuO CC from EHTS, samples are about five centimeters long and many potential measuring points are pasted on the shunt to estimate the quench homogeneity. Thermal phenomena in FCLs are essential, numerical models are important to calculate the maximum temperatures. To validate these models we measure the CC temperature by depositing thermal sensors (Cu resistance) above the shunt layer and the substrate. An electrical insulation with a low thermal resistivity between the CC and the sensors is necessary. We use a thin layer of Parylene because of its good mechanical and electrical insulation properties at low temperature. The better quench behaviour of CC for temperatures close to the critical temperature has been confirmed. The measurements are in good agreement with simulations, this validates the thermal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.