Abstract

Cyber crimes related to malware families are on the rise. This growth persists despite the prevalence of various antivirus software and approaches for malware detection and classification. Security experts have implemented Machine Learning (ML) techniques to identify these cyber-crimes. However, these approaches demand updated malware datasets for continuous improvements amid the evolving sophistication of malware strains. Thus, we present the FCG-MFD, a benchmark dataset with extensive Function Call Graphs (FCG) for malware family detection. This dataset guarantees resistance against emerging malware families by enabling security systems. Our dataset has two sub-datasets (FCG & Metadata) (1,00,000 samples) from VirusSamples, Virusshare, VirusSign, theZoo, Vx-underground, and MalwareBazaar curated using FCGs and metadata to optimize the efficacy of ML algorithms. We suggest a new malware analysis technique using FCGs and graph embedding networks, offering a solution to the complexity of feature engineering in ML-based malware analysis. Our approach to extracting semantic features via the Natural Language Processing (NLP) method is inspired by tasks involving sentences and words, respectively, for functions and instructions. We leverage a node2vec mechanism-based graph embedding network to generate malware embedding vectors. These vectors enable automated and efficient malware analysis by combining structural and semantic features. We use two datasets (FCG & Metadata) to assess FCG-MFD performance. F1-Scores of 99.14% and 99.28% are competitive with State-of-the-art (SOTA) methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.