Abstract

Growing evidence indicates that the development and progression of multiple complex diseases are influenced by microRNA (miRNA). Identifying more miRNAs as biomarkers for clinical diagnosis, treatment and prognosis is vital to promote the development of bioinformatics and medicine. Considering that the traditional biological experimental methods are generally time-consuming and expensive, high-efficient computational methods are encouraged to uncover potential disease-related miRNAs. In this paper, FCGCNMDA is presented to predict latent miRNA-disease associations by utilizing fully connected graph convolutional networks. Specially, our method first constructs a fully connected graph in which edge weights represent correlation coefficient between any two pairs of miRNA-disease pair, and then feeds this fully connected graph along with miRNA-disease pairs feature matrix into a two-layer graph convolutional networks (GCN) for training. At last, we utilize the trained network to predict the scores for unknown miRNA-disease pairs. As a result, FCGCNMDA achieves AUC value of [Formula: see text] and AUPRC value of [Formula: see text] in HMDD v2.0 based on five-fold cross validation. Moreover, case studies on Lymphoma, Breast Neoplasms and Prostate Neoplasms shown that 98%, 98%, 98% of the top 50 selected miRNAs were validated by recent experimental evidence. From above results, we can deduce that FCGCNMDA can be regarded as reliable method for potential miRNA-disease associations prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.