Abstract

Cryptococcus neoformans monoclonal antibody immune complex (IC) induces beta-chemokines and phagocytosis in primary human microglia via activation of Fc receptor for immunoglobulin G (FcgammaR). In this report, we investigated microglial FcgammaR signal-transduction pathways by using adenoviral-mediated gene transfer and specific inhibitors of cell-signaling pathways. We found that Src inhibitor PP2 and Syk inhibitor piceatannol inhibited phagocytosis, macrophage-inflammatory protein-1alpha (MIP-1alpha) release, as well as phosphorylation of extracellular-regulated kinase (ERK) and Akt, consistent with Src/Syk involvement early in FcgammaR signaling. Constitutively active mitogen-activated protein kinase kinase (MEK) induced MIP-1alpha, and Ras dominant-negative (DN) inhibited IC-induced ERK phosphorylation and MIP-1alpha production. These results suggest that the Ras/MEK/ERK pathway is necessary and sufficient in IC-induced MIP-1alpha expression. Neither Ras DN nor the MEK inhibitor U0126 inhibited phagocytosis. In contrast, phosphatidylinositol-3 kinase (PI-3K) inhibitors Wortmannin and LY294002 inhibited phagocytosis without affecting ERK phosphorylation or MIP-1alpha production. Conversely, Ras DN or U0126 did not affect Akt phosphorylation. Together, these results demonstrate distinct roles played by the PI-3K and Ras/MEK/ERK pathways in phagocytosis and MIP-1alpha induction, respectively. Our results demonstrating activation of functionally distinct pathways following microglial FcgammaR engagement may have implications for human central nervous system diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.