Abstract

COVID-19 spreads and contracts people rapidly, to diagnose this disease accurately and timely is essential for quarantine and medical treatment. RT-PCR plays a crucial role in diagnosing the COVID-19, whereas computed tomography (CT) delivers a faster result when combining artificial assistance. Developing a Deep Learning classification model for detecting the COVID-19 through CT images is conducive to assisting doctors in consultation. We proposed a feature complement fusion network (FCF) for detecting COVID-19 through lung CT scan images. This framework can extract both local features and global features by CNN extractor and ViT extractor severally, which successfully complement the deficiency problem of the receptive field of the other. Due to the attention mechanism in our designed feature complement Transformer (FCT), extracted local and global feature embeddings achieve a better representation. We combined a supervised with a weakly supervised strategy to train our model, which can promote CNN to guide the VIT to converge faster. Finally, we got a 99.34% accuracy on our test set, which surpasses the current state-of-art popular classification model. Moreover, this proposed structure can easily extend to other classification tasks when changing other proper extractors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.