Abstract
There is increasing evidence that exposure to organic allergens may induce or exacerbate lesional skin in patients with atopic dermatitis. In this study, patients with atopic dermatitis were patch tested to 11 common organic allergens and to control chambers containing 0.4% phenol and 50% glycerin in 0.9% saline. In biopsies from positive patch test reactions, patch test control skin, lesional eczematous and non-lesional skin from atopic individuals, and normal skin from non-atopic volunteers, the presence and distribution of macrophages (RFD7+), dendritic cells (RFD1+), and Langerhans cells, and the expression of the low-affinity receptor for IgE (CD23) were investigated. In patch test reactions and lesional skin samples, inflammatory infiltrates of diffusely distributed macrophages (RFD7+), dendritic cells (RFD1+), T lymphocytes (RFTmix+), and Langerhans cells (CD1+) were seen, the latter being present in both the epidermis and the dermis. The numbers of Langerhans cells were reduced in the epidermis and increased in the dermis in patch test reactions and lesional skin compared to their controls. Double staining revealed a change in the distribution of CD23 antigen. In patch test control and non-lesional biopsies many macrophages and only a few Langerhans cells within the dermal infiltrates expressed this antigen. In patch test reaction and lesional skin samples, however, the proportion of CD23+ dermal Langerhans cells had increased compared to macrophages. Furthermore, in these latter samples an increased proportion of dermal CD1+ cells expressed the dendritic cell (RFD1+) marker. These results show that following antigen challenge there are marked similarities between the phenotype of the cellular infiltrate in patch test reaction and lesional skin biopsies, and also demonstrate a changing distribution of CD23 on antigen-presenting cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.