Abstract
지식기반 환경의 변화와 더불어 이-러닝은 매우 보편화된 교수.학습 방법의 하나가 되었으며, 이와 관련한 여러 연구들이 진행되고 있다. 이-러닝의 주요 연구 분야 중의 하나는 학습자의 다양한 상황들을 반영하여 학습자 개개인의 특징에 맞게 학습내용을 지원하기 위한 적응형 학습 시스템에 관한 연구이다. 이와 관련하여 최근에는 적응적 학습내용을 보다 효과적으로 지원하기 위하여 온톨로지를 기반으로 한 적응형 학습 시스템에 대한 연구들이 활발히 진행되고 있다. 본 논문에서는 FCA의 개념 망을 기반으로 온톨로지의 접근 방법과 목적은 같이하지만, 특정 영역의 학습에 적합한 사용자가 보다 자유롭고 쉽게 자신의 적응형 학습 시스템을 구축하여 사용할 수 있는 적응형 학습 시스템을 설계하여 제안한다. 제안된 시스템은 학습영역에 존재하는 학습객체와 학습개념들 사이의 연관 관계에 따라 이들을 개념 망 구조 안에 자동으로 계층화한다. 또한 학습자의 지식수준, 학습선호도, 학습스타일 및 학습개념의 학습상태에 따라 개념 망 학습구조를 적응적으로 구성하여 제시한다. Along with the transformation of the knowledge-based environment, e-learning has become a main teaching and learning method, prompting various research efforts to be conducted in this field. One major research area in e-learning involves adaptive learning systems that provide personalized learning content according to each learner's characteristics by taking into consideration a variety of learning circumstances. Active research on ontology-based adaptive learning systems has recently been conducted to provide more efficient and adaptive learning content. In this paper, we design and propose an adaptive learning system based on the concept lattice of Formal Concept Analysis (FCA) with the same objectives as those of ontology approaches. However, we are in pursuit of a system that is suitable for learning of specific domains and one that allows users to more freely and easily build their own adaptive learning systems. The proposed system automatically classifies the learning objects and concepts of an evolved domain in the structure of a concept lattice based on the relationships between the objects and concepts. In addition, the system adaptively constructs and presents the learning structure of the concept lattice according to each student's level of knowledge, learning style, learning preference and the learning state of each concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.