Abstract
Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody-dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibited by a protein tyrosine kinase (PTK) inhibitor. Based on the paradigm provided by the receptor tyrosine kinases, we investigated whether PLC-gamma 1 and/or PLC-gamma 2 are expressed in NK cells, and whether the PLC-gamma isoforms are tyrosine phosphorylated in response to Fc gamma R stimulation. Immunoblotting analyses with PLC-gamma 1- and PLC-gamma 2-specific antisera demonstrate that both isoforms are expressed in human NK cells. Furthermore, Fc gamma R crosslinking triggers the tyrosine phosphorylation of both PLC-gamma 1 and PLC-gamma 2 in these cells. Phosphorylation of both isoforms is detectable within 1 min, and returns to basal level within 30 min. Pretreatment with herbimycin A, a PTK inhibitor, blocked the Fc gamma R-induced tyrosine phosphorylation of PLC-gamma 1 and PLC-gamma 2, and the subsequent release of inositol phosphates. These results suggest that Fc gamma R-initiated phosphoinositide turnover in human NK cells is regulated by the tyrosine phosphorylation of PLC-gamma. More broadly, these observations demonstrate that nonreceptor PTK(s) activated by crosslinkage of a multisubunit receptor can phosphorylate both PLC-gamma isoforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.