Abstract

Human IgG4 antibodies are remarkable not only because they can dynamically exchange half-molecules (Fab-arm exchange) but also for their ability to interact with the Fc part of IgG4 and other IgG subclasses. This rheumatoid factor-like binding of IgG4 does not appear to take place spontaneously, because it is only observed to solid-phase or antigen-bound IgG. We hypothesized that Fc–Fc interactions might involve (partial) dissociation of heavy chains. We investigated the molecular basis of these Fc–Fc interactions, and found that the structural features important for the exchange reaction also control the Fc binding activity. In particular, if arginine-409 in the CH3–CH3 interface in IgG4 is mutated to lysine (the equivalent in IgG1), Fc–Fc interactions are formed 3 orders of magnitude less efficiently compared to the wild-type. This mutation was previously found to increase the CH3–CH3 interaction strength in IgG4. Furthermore, of the two hinge isomers of IgG4, the intra-chain (non-covalently linked) form was found to form Fc–Fc interactions, but not the inter-chain form. Together, these results demonstrate that Fc–Fc interactions of IgG4 involve (partial or complete) dissociation of heavy chains. The promiscuity to other IgG subclasses suggests that IgG4 might act as scavenger to IgG molecules with impaired structural integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.