Abstract

Autophagy is an important protein degradation pathway and a part of the innate immune system that is activated in the brain tissue during animal and human prion diseases. However, the possible mechanism by which prion infection triggers autophagy and the significance of activated autophagy on prion accumulation remain unknown. Here, we demonstrated that autophagic flux was enhanced in the persistent prion-infected cell line, SMB-S15. Knockdown of ATG5 and the presence of three autophagic inhibitors resulted in a significant increase of PrP(Sc). The mammalian target of rapamycin (MTOR) levels in SMB-S15 cells were also markedly decreased, in direct relation to PrP(Sc) accumulation. F-box and WD repeat domain containing 7 (FBXW7) levels in SMB-S15 cells and in the brains of scrapie-agent 263K-infected hamsters were upregulated at the early stage of infection, leading to active ubiquitination and degradation of MTOR. Knockdown of FBXW7 in SMB-S15 cells remarkably inhibited autophagic flux and increased PrP(Sc) accumulation. Thus, we conclude that prion infection induced the expression of FBXW7, which mediated MTOR ubiquitination and degradation, further altering phosphorylation status through cross talk between MTORC1 and AMPK and increasing autophagic flux. Autophagy may serve as innate immunity to degrade PrP(Sc) and maintain prion homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.