Abstract
BackgroundThe ubiquitin-proteasome pathway, mediated in part, by ubiquitin E3 ligases, is critical in regulating cellular processes such as cell proliferation, apoptosis, and migration. FBXO17 was recently identified as an F-box protein that targets glycogen synthase kinase-3β to the E3 ubiquitin ligase protein complex for polyubiquitination and proteasomal degradation. Here, we identified that in several lung adenocarcinoma cell lines, FBXO17 cellular protein was detected at relatively high levels, as was expression in a subset of lung cancers. Hence, we investigated the effects of FBXO17 on cell proliferation.MethodsSingle cell RNA sequencing analysis was performed on a resection of a non-small cell lung carcinoma tumor to examine FBXO17 expression. Multiple lung cancer cell lines were immunoblotted, and The Cancer Genome Atlas was analyzed to determine if FBXO17 expression was amplified in a subset of lung cancers. A549 cells were transfected with empty vector or FBXO17-V5 plasmid and immunoblotted for Akt pathway mediators including PDK1, ERK1/2, ribosomal protein S6, and CREB. Cell proliferation and viability were analyzed by trypan blue exclusion, BrdU incorporation and an MTS-based fluorometric assay. Studies were also performed after transfecting with sifbxo17. Samples were used in an RNA microarray analysis to evaluate pathways affected by reduced FBXO17 gene expression.ResultsWe observed that overexpression of FBXO17 increased A549 cell proliferation coupled with Akt activation. Ectopically expressed FBXO17 also increased ERK1/2 kinase activation and increased phosphorylation of RPS6, a downstream target of mTOR. We also observed an increased number of cells in S-phase and increased metabolic activity of lung epithelial cells expressing FBXO17. FBXO17 knockdown reduced Akt Ser 473 phosphorylation approaching statistical significance with no effect on Thr 308. However, ERK1/2 phosphorylation, cellular metabolic activity, and overall cell numbers were reduced. When we analyzed RNA profiles of A549 cells with reduced FBXO17 expression, we observed downregulation of several genes associated with cell proliferation and metabolism.ConclusionsThese data support a role for FBXO17 abundance, when left unchecked, in regulating cell proliferation and survival through modulation of Akt and ERK kinase activation. The data raise a potential role for the F-box subunit in modulating tumorigenesis.
Highlights
The ubiquitin-proteasome pathway, mediated in part, by ubiquitin E3 ligases, is critical in regulating cellular processes such as cell proliferation, apoptosis, and migration
These data support a role for F-box only protein 17 (FBXO17) abundance, when left unchecked, in regulating cell proliferation and survival through modulation of Protein kinase B (Akt) and ERK kinase activation
FBXO17 is highly expressed in some lung cancer cell lines We first examined if FBXO17 was overexpressed or altered in lung cancer cell lines (Fig. 1a)
Summary
The ubiquitin-proteasome pathway, mediated in part, by ubiquitin E3 ligases, is critical in regulating cellular processes such as cell proliferation, apoptosis, and migration. FBXO17 was recently identified as an F-box protein that targets glycogen synthase kinase-3β to the E3 ubiquitin ligase protein complex for polyubiquitination and proteasomal degradation. The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)Akt- mammalian target of rapamycin (mTOR) pathway drives many cellular functions including cell survival, proliferation, and migration. Akt phosphorylates downstream targets such as Bad, GSK3β, and FOXO transcription factors to inhibit apoptosis and promote cell survival, migration, and proliferation [2, 3]. A critical substrate of Akt is mTOR, a serine-threonine kinase that forms part of two complexes mTORC1 and mTORC2. While the primary targets of mTORC1 include p70S6 Kinase 1 (S6K1), RPS6, and eIF4E Binding Protein (4EBP) to promote protein translation, mTORC2 facilitates cell growth through phosphorylation of downstream targets such as several members of the AGC (PKA/PKG/PKC) family of kinases in addition to Akt [5, 6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.