Abstract

Author SummaryThe Notch signalling pathway is a highly conserved system that controls cell differentiation decisions in a wide range of animal species and cell types, and at different steps during cell lineage progression. An important function of the Notch pathway is in lateral inhibition—an interaction between equal adjacent cells that drives them towards different final states. The basic principle of lateral inhibition is that activation of the Notch cell surface receptor represses production of the Notch ligand (also borne on the cell surface). Consequently, cells expressing less Notch produce more Notch ligand that can activate the Notch pathway in neighboring cells and thereby amplify the differences between these cells. However, the additional regulatory circuits required to fine-tune this delicate process have so far remained elusive. Here we describe the identification of a novel intracellular positive feedback loop that connects Fbw7 (the ubiquitin ligase responsible for targeting Notch for degradation) and Notch itself. We show that Fbw7 reduces the stability of Notch intracellular domain (NICD) protein, as previously established, but also that the fbw7 gene is itself transcriptionally downregulated by the Notch effector Hes5. Thus we conclude that increased Notch activity causes NICD stabilisation. Further, we demonstrate that perturbation of this regulatory loop is responsible for the Fbw7 haploinsufficiency observed for Notch-dependent functions in intestine and brain stem cells.

Highlights

  • FBW7 belongs to the family of SCF (Skp1, Cul1, F-box)-E3 ligases, which degrades several oncoproteins that function in cellular growth and division pathways, including c-MYC, CYCLIN-E, c-JUN, and Notch proteins

  • We describe the identification of a novel intracellular positive feedback loop that connects Fbw7 and Notch itself

  • We show that Fbw7 reduces the stability of Notch intracellular domain (NICD) protein, as previously established, and that the fbw7 gene is itself transcriptionally downregulated by the Notch effector Hes5

Read more

Summary

Introduction

FBW7 belongs to the family of SCF (Skp, Cul, F-box)-E3 ligases, which degrades several oncoproteins that function in cellular growth and division pathways, including c-MYC, CYCLIN-E, c-JUN, and Notch proteins. Three FBW7 isoforms have been identified (FBW7a, FBW7b, FBW7c), each with an isoform-specific first exon, linked to 10 shared exons. Each isoform is expressed from its own promoter allowing isoform-specific transcriptional regulation and tissue-specific expression. Whether FBW7 isoforms show preferential degradation of substrates is still controversial, studies have shown that c-MYC, CYCLIN-E, and PIN1 are degraded by FBW7a [1,2,3]. A further level of complexity of FBW7 function is added by the fact that different substrates are regulated in a tissue-specific manner by FBW7 [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.