Abstract

Objective. Motor imagery-based brain–computer interface (MI-BCI) is one of the most important BCI paradigms and can identify the target limb of subjects from the feature of MI-based Electroencephalography signals. Deep learning methods, especially lightweight neural networks, provide an efficient technique for MI decoding, but the performance of lightweight neural networks is still limited and need further improving. This paper aimed to design a novel lightweight neural network for improving the performance of multi-class MI decoding. Approach. A hybrid filter bank structure that can extract information in both time and frequency domain was proposed and combined with a novel channel attention method channel group attention (CGA) to build a lightweight neural network Filter Bank CGA Network (FB-CGANet). Accompanied with FB-CGANet, the band exchange data augmentation method was proposed to generate training data for networks with filter bank structure. Main results. The proposed method can achieve higher 4-class average accuracy (79.4%) than compared methods on the BCI Competition IV IIa dataset in the experiment on the unseen evaluation data. Also, higher average accuracy (93.5%) than compared methods can be obtained in the cross-validation experiment. Significance. This work implies the effectiveness of channel attention and filter bank structure in lightweight neural networks and provides a novel option for multi-class motor imagery classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call