Abstract

Error-bounded lossy compression has been effective to resolve the big scientific data issue because it has a great potential to significantly reduce the data volume while allowing users to control data distortion based on specified error bounds. However, none of the existing error-bounded lossy compressors can always obtain the best compression quality because of the diverse characteristics of different datasets. In this paper, we develop FAZ, a flexible and adaptive error-bounded lossy compression framework, which projects a fairly high capability of adapting to diverse datasets. FAZ can always keep the compression quality at the best level compared with other state-of-the-art compressors for different datasets. We perform a comprehensive evaluation using 6 real-world scientific applications and 6 other state-of-the-art error-bounded lossy compressors. Experiments show that compared with the other existing lossy compressors, FAZ can improve the compression ratio by up to 120%, 190%, and 75% when setting the same error bound, the same PSNR and the same SSIM, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call