Abstract

The Fayet–Iliopoulos D-term is a common feature in N=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {N}}=1$$\\end{document} string vacua that contain an anomalous U(1) gauge symmetry, and arises from a one-loop diagram in string perturbation theory. The same diagram is generated in string vacua in which supersymmetry is broken directly at the string scale, either via spontaneous Scherk–Schwarz breaking, in which case the gravitino mass is determined by the radius of the circle used in the Scherk–Schwarz mechanism, or via explicit supersymmetry breaking by the GSO projections. We analyse the resulting would-be Fayet–Illiopoulos D-term in the non-supersymmetric string vacua and its contribution to the vacuum energy. A numerical estimate in an explicit tachyon-free string-derived model suggests that the would-be D-term contribution may uplift the vacuum energy to a positive value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call