Abstract

Dynamically-operated water electrolyzers enable the production of green hydrogen for cross-sector applications while simultaneously stabilizing power grids. In this study, the start-up phase of polymer electrolyte membrane (PEM) water electrolyzers is investigated in the context of intermittent renewable energy sources. During the start-up of the electrolysis system, the temperature increases, which directly influences hydrogen production efficiency. Experiments on a 100kWel electrolyzer, combined with simulations of electrolyzers with up to 1MWel, were used to analyze the start-up phase and assess its implications for operators and system designers. It is shown that part-load start-up at intermediate cell voltages of 1.80 V yields the highest efficiencies of 74.0 %LHV compared to heat-up using resistive electrical heating elements, which reaches maximum efficiencies of 60.9 %LHV. The results further indicate that large-scale electrolyzers with electrical heaters may serve as flexible sinks in electrical grids for durations of up to 15 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call