Abstract

A bimodal texturing effect of semiconducting polymers is investigated by incorporating conjugated small molecules to significantly improve the charge transport characteristics via formation of 3D transport pathways. Solution blending of the electron‐transporting polymer, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), with small molecular crystals of tetrathiafulvalene and tetracyanoquinodimethane is used, and the thin film microstructures are studied using a combination of atomic force microscopy, transmission electron microscopy, 2D grazing incidence X‐ray diffraction, and surface‐sensitive near‐edge X‐ray absorption fine structure. Blended thin films show edge‐on and face‐on bimodal texture with long‐range order and microstructure packing orientation preferable for electron transport through the channel in organic field‐effect transistors, which is confirmed by high electron mobility 1.91 cm2 V−1 s−1, small contact resistance, and low energetic disorder according to temperature dependence of the field‐effect mobility. Structural changes suggest a 3D network charge transport model via lamella packing and bimodal orientation of the semiconducting polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.