Abstract
The transport of cationic amine-modified latex (AML) and anionic carboxylate-modified latex (CML) microspheres through a discrete sandstone fracture with mineralogical heterogeneity and roughness was studied. Two microsphere sizes (200 nm and 1000 nm), two ionic strengths (5 mM and 10 mM), and two specific discharges (0.35 mm.s-1 and 0.70 mm.s-1) were tested to observe the impact on transport under favorable and unfavorable conditions. The difference in retention between AML (net favorable) and CML (net unfavorable) microsphere attachment was 25% for the 200 nm microspheres and 13% for the 1000 nm microspheres. Less than 50% of the AML microspheres were retained in the fracture, postulated to be due to the effects of mineralogical heterogeneity and fracture surface roughness. The effect of an increase in ionic strength in increasing retention was significant for unfavorable attachment, but was not significant for favorable attachment conditions. The effect of specific discharge was minor for all but the 200 nm CML microspheres at 10 mM ionic strength. When flushing the fracture first with cationic microspheres, then with anionic microspheres, the recovery of anionic microspheres resembled favorable attachment presumably due to interaction with cationic microspheres that remained attached to the sandstone surface. Colloid breakthrough curves could be fit well with a two site attachment model, with reversible and irreversible sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.